Periodic Solutions and Slow Manifolds

نویسنده

  • Ferdinand Verhulst
چکیده

After reviewing a number of results from geometric singular perturbation theory, we give an example of a theorem for periodic solutions in a slow manifold. This is illustrated by examples involving the van der Pol-equation and a modified logistic equation. Regarding nonhyperbolic transitions we discuss a four-dimensional relaxation oscillation and also canard-like solutions emerging from the modified logistic equation with sign-alternating growth rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dynamics of Slow Manifolds

After reviewing a number of results from geometric singular perturbation theory, we discuss several approaches to obtain periodic solutions in a slow manifold. Regarding nonhyperbolic transitions we consider relaxation oscillations and canard-like solutions. The results are illustrated by prey-predator systems.

متن کامل

Asymptotics of a Slow Manifold

Approximately invariant elliptic slow manifolds are constructed for the Lorenz– Krishnamurthy model of fast-slow interactions in the atmosphere. As is the case for many other twotime-scale systems, the various asymptotic procedures that may be used for this construction diverge, and there are no exactly invariant slow manifolds. Valuable information can however be gained by capturing the detail...

متن کامل

Harmonic Solutions to Perturbations of Periodic Separated Variables Odes on Manifolds

We study the set of harmonic solutions to perturbed periodic separated variables ordinary differential equations on manifolds. As an application, a multiplicity result is deduced.

متن کامل

Symmetric invariant manifolds in the Fermi-Pasta-Ulam lattice

The Fermi-Pasta-Ulam (FPU) lattice with periodic boundary conditions and n particles admits a large group of discrete symmetries. The fixed point sets of these symmetries naturally form invariant symplectic manifolds that are investigated in this short note. For each k dividing n we find k degree of freedom invariant manifolds. They represent short wavelength solutions composed of k Fourier-mod...

متن کامل

Symmetric invariant manifolds in the Fermi Pasta Ulam chain

The Fermi Pasta Ulam oscillator chain with periodic boundary conditions and n particles admits a large group of discrete symmetries. The xed point sets of these symmetries naturally form invariant manifolds that are investigated in this short note. For each k dividing n we nd invariant k degree of freedom symplectic manifolds. They represent short wavelength solutions composed of k Fourier-mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007